纳米硬质合金价格表_纳米硬质合金价格表最新
1.1纳米等于多少目啊?
2.什么是碳化玻璃
3.如何正确选用陶瓷刀具材料
4.纳米wc硬质合金在哪些领域有应用
5.粉末冶金常见产品
6.纳米的资料
1纳米等于多少目啊?
1纳米=10的负9次方目。
1纳米相当于4倍原子大小,比单个细菌的长度还要小的多。单个细菌用肉眼根本看不到,用显微镜测直径大约五微米。
设一根头发的直径0.05毫米,把它轴向平均剖成5万根,每根的厚度大约就是1纳米。1纳米等于0.000001毫米。
以纳米技术制造的电子器件,其性能大大优于传统的电子器件,功耗可以大幅降低。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。
扩展资料:
纳米材料“脾气怪”纳米金属颗粒易燃易爆,几个纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。
因此,纳米金属颗粒的粉体可用来做成烈性,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。
关于纳米及超细结构硬质合金的晶粒度问题,目前没有统一的标准。一般认为,晶粒度小于0.5μm的硬质合金为超细硬质合金,晶粒度小于0.2μm的硬质合金为纳米硬质合金。
百度百科-纳米
什么是碳化玻璃
问题一:化学钢化玻璃与碳化玻璃的区别 化学钢化玻璃与碳化玻璃的区别以及优点:
化学钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
优点:
使用安全是钢化玻璃第二个主要优点,其承载能力增大改善了易碎性质。化学钢化玻璃的耐急冷急热性质较之普通玻璃有2~3倍的提高,一般可承受150LC以上的温差变化,对防止热炸裂有明显的效果。
碳化玻璃也叫碳光板,是由精选石英砂通过二次高温处理所形成的板材。
优点:
抗划痕:产品因碳化添加物质,整体硬度高达莫氏7.5度以上,只有金刚石(钻石)类物体才会对其表面造成轻微划痕,其他任何物体均不会在其表面留下痕迹.
绿色环保:产品高密度结晶,纳米碳降解物质添加,对食物无任何污染,可与食品直接接触,无毒、无污染、绿色环保产品
高光泽:产品表面平整度达到1/1000颗粒度,反光度达到95度,使反光折射景物清晰毕现,整体橱?浴柜展示及其引人注目。
抗冲击:因本身强韧度极高仅2mm厚度,用300克钢球1米高度自由下落也不会对其造成任何损伤。
无色差:使用原装英国SERICOL色可丽彩涂原料,电脑记忆色比度分辩设备喷涂,长时间、多批次生产也不会产生色差问题。
抗重压:纳米碳化瞬间煅烧工艺,2mm厚度可载重150公斤的重量,强韧度让人惊叹!
阻燃:产品本身就是经1000度高温成型,普通明火烧灼不会给产品表面带来任何损伤。
防潮湿:产品密度接近宝石级,表面无孔隙,任何液体都不会渗透。
耐老化:超强抗紫外线透射,英国SERICOL色可丽高附着彩色涂层,色彩内透工艺,历久长新。
耐腐蚀:高密度纳米产品,强酸、强碱(除氢氟酸外)等化学腐蚀试剂都不会给产品带来任何腐蚀。
问题二:什么是碳化玻璃 碳化玻璃又叫碳光板。碳光板由精选石英砂通过二次高温处理所形成的板材。
问题三:碳化玻璃是什么玻璃?有哪些特点?与钢化玻璃的区别在哪 1.钢化玻璃是里面加了玻璃纤维。碳化玻璃是里面加了碳元素。
2.钢化玻璃碎了不烂(还是粘成一块)。碳化玻璃打不进(钢性强)
问题四:钢化玻璃和碳化玻璃哪种好 1.钢化玻璃是里面加了玻璃纤维。碳化玻璃是里面加了碳元素。
2.钢化玻璃碎了不烂(还是粘成一块)。碳化玻璃打不进(钢性强)。
问题五:橱柜碳化玻璃门板是玻璃上贴得什么材料?这种材料哪里有卖?这种材料叫什么名称? 碳光板,是最近新近研究开发的一种环保门?,它用0.4cm的高强度玻璃与三聚氰胺板高温合成,每块门板独立加工,用金属封边,坚固耐用,更加的好打理,不怕磨,不怕油,可承受一定力量的撞击,整个加工过程,只用少量的环保胶密封粘合,是当今市场上相当流行的一种橱柜材料,现在也有用0.5cm的高强度玻璃制造,就是有点重,必须用高档的铰链才能胜任。
问题六:碳化玻璃橱柜门品牌有哪些 品牌太多了,一般门板厂都是发现成的玻璃,然后在厂里裁切。碳光门的好处是门板颜色好看,许多颜色晶钢门做不出来,但缺点是容易碎。
问题七:新型玻璃的材料是什么 第1章 新型材料导论
1.1 新型材料与高新技术
1.1.1 何谓“新型材料”,“高新技术”
1.1.2 新型材料是高新技术研究、开发的先导和基石
1.2 新型材料的特征与分类
1.2.1 新型材料的特征
1.2.2 五彩缤纷、绚丽多彩的材料世界
1.3 材料的成分、结构与性能之间的关系
1.3.1 材料科学的“四要素”与“五要素”
1.3.2 材料结构、成分、性能与应用之间的关系
1.4 新型材料的发展趋势
1.4.1 伴随高科技的迅猛发展,对新型材料提出新的总体要求
1.4.2 新型材料的发展趋势
思考题
第2章 新型金属材料
2.1 概述
2.1.1 金属材料仍将是21世纪最主要的结构材料
2.1.2 金属材料的主要强韧化途径
2.2 新型工程结构用钢
2.2.1 低合金结构钢
2.2.2 新型工程结构用钢的成分与组织设计
2.2.3 控制加工工艺过程,提高钢的强韧性
2.2.4 控制夹杂物形态
2.2.5 微合金化低碳高强度钢
2.2.6 微合金化低碳F-M双相钢
2.2.7 发展新型低合金结构钢
2.2.8 积极开发低碳马氏体(M)钢
2.3 新型机器零件用钢――非调质钢
2.3.1 概述
2.3.2 强韧化特点
2.3.3 冶金工艺特点
2.3.4 性能特点
2.3.5 非调质钢的应用
2.3.6 非调质钢的发展与研究动向
2.4 金属间化合物高温结构材料
2.4.1 金属间化合物及其特性
2.4.2 改善金属间化合物作为高温结构材料的方法
2.4.3 金属间化合物结构材料的发展
2.5 刚柔相济的超塑性合金
2.5.1 超塑性合金的由来
2.5.2 超塑性合金的优点
2.5.3 为什么金属会产生超塑性行为
2.5.4 外界条件对超塑性的影响
2.5.5 超塑性合金的作用
思考题
第3章 新型聚合物合成材料
3.1 概述
3.1.1 聚合物材料的发展与分类
3.1.2 聚合物材料的性能
3.1.3 聚合物材料的强韧化(即改性)
3.1.4 聚合物材料的发展前景展望
3.2 新型工程塑料
3.2.1 通用工程塑料
3.2.2 特种工程塑料
3.3 聚合物液晶材料
3.3.1 何谓液晶材料
3.3.2 聚合物液晶材料的形成
3.3.3 聚合物液晶材料的类型
3.3.4 聚合物液晶必须具备的条件
3.3.5 聚合物液晶特殊的结构
3.3.6 奇妙的效应
3.3.7 聚合物液晶材料的应用
3.3.8 聚合物液晶材料的发展
3.4 导电聚合物材料
3.4.1 概述
3.4.2 结构型导电聚合物材料
3.4.3 复合型导电聚合物材料
3.5 聚合物材料与可持续发展
3.5.1 废弃聚合物的回收与再利用
3.5.2 绿色聚合物――环保与可降解聚合物
思考题
第4章 新型无机非金属材料
4.1 概述
4.1.1 无机非金属材料的范围
4.1.2 无机非金属材料的分类
4.1.3 无机非金属材料的制备方法
4.1.4 无机非金属材料的基本特点
4.1.5 无机非金属材料的应用发展前景
4.2 氧化物陶瓷材料
4.2.1 氧化铝(aluminum oxide,alumina)
4.2.2 二氧化锆
4.2.3 ZTA陶瓷
4.3 碳化物陶瓷材料
4.3.1 碳化硅(sili......>>
问题八:新型玻璃有哪些 有很多,你自己选吧。应该比较具体。
打不碎玻璃
英国一家飞机制造公司发明了一种用于飞机上的打不碎玻璃,它是一种夹有碎屑黏合成透明塑料薄膜的多层玻璃。这种以聚氯酯为基础的塑料薄膜具有黏滞的半液态稠度,当有人试图打碎它时,受打击的聚氯酯薄膜会慢慢聚集在一起,并恢复自己特有的整体性。这种玻璃可用于轿车,以防盗车。
可钉钉玻璃
日本三菱电子仪器实验室研制成功的这种玻璃,是将硼酸玻璃粉和碳化纤维混合后加热到1000摄氏度制成。它是用硬质合金强化的玻璃,其最大断裂应力为一般玻璃的2倍以上,无脆性弱点,钉钉和装木螺丝,不用担心破碎。
不反光玻璃
由德国SCHOTT玻璃公司开发的不反光玻璃,光线反射率仅在1%以内(一般玻璃为8%),从而解决了玻璃反光和令人目眩的头痛问题。
防盗玻璃
匈牙利一家研究所研制的这种玻璃为多层结构,每层中间嵌有极细的金属导线,万一盗贼将玻璃击碎时,与金属导线相连接的警报系统会立即发出报警信号。
隔音玻璃
日本一家公司从德国引进技术,制造出一种新型隔音玻璃。这种玻璃是用厚达5毫米的软质树脂将两层玻璃黏合在一起,几乎可将会部杂音吸收殆尽,特别适合录音室和播音室使用。它的价格相当于普通玻璃的5倍。
空调玻璃
这是一种用双层玻璃加工制造的,可将暖气送到玻璃夹层中,通过气孔散发到室内,代替暖气片。这不仅节约能量,而且方便、隔音和防尘,到了夏天还可改为送冷气。
真空玻璃
日本平板玻璃公司开发的这功真空玻璃,是在两片厚度为3毫米的玻璃之间设有0.2毫米间隔的1/100大气压的真空层,层内有金属小圆柱支撑以防外部大气压使两片玻璃贴到一起。这种真空玻璃厚度仅6.2毫米,可直接安装在一般的窗框上。它具有良好的隔热隔音效果,适用于民宅和高层建筑的窗户。
智能玻璃
美国研制的这种玻璃透明度能随着视野角度变化而变化,它有一种特殊的高分子膜,其散光度、厚度、面积和形式都能由制造者自由选择,利用它可以起到一定的保护和屏蔽作用。
全息玻璃
美国波士顿一研究小组开发的全息衍射玻璃,可将某些颜色的光线集中到选择的方位。用这种玻璃的窗户可将自然光线分解成光谱组合色,并将光线射向天花板进而反射至房间的各个角落,即使没有窗户的房间,也可以通过通风管从反射墙“得到”阳光,然后由孔眼将光线漫射到天花板上。
调温玻璃
英国一家公司研制成功被称为云胶的热变色调温玻璃,它是一种两面是塑料薄膜和中间夹着聚合物水色溶剂的合成玻璃。它在低温环境中呈透明状,吸收日光的热能,待环境温度升高后则变成不透明
1、 钢化玻璃。它是普通平板玻璃经过再加工处理而成一种预应力玻璃。钢化玻璃相对于普通平板玻璃来说,具有两大特征:
1) 前者强度是后者的数倍,抗拉度是后者的3倍以上,抗冲击是后者5 倍以上。
2) 钢化玻璃不容易破碎,即使破碎也会以无锐角的颗粒形式碎裂,对人 体伤害大大降低。
2、 磨砂玻璃。它也是在普通平板玻璃上面再磨砂加工而成。一般厚度多在9厘以下,以5、6厘厚度具多。
3、 喷砂玻璃。性能上基本上与磨砂玻璃相似,不同的改磨砂为喷砂。由于两者视觉上类同,很多业主,甚至装修专业人员都把它们混为一谈。
4、 压花玻璃。是用压延方法制造的一种平板玻璃。其最大的特点是透光不透明,多使用于洗手间等装修区域。
5、 夹丝玻璃。是用压延方法,将金属丝或金属网嵌于玻璃板内制成的一种具有抗冲击平板玻璃,受撞击时只会形成辐射状裂纹而不致于......>>
问题九:化学钢化玻璃与碳化玻璃的区别 化学钢化玻璃与碳化玻璃的区别以及优点:
化学钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
优点:
使用安全是钢化玻璃第二个主要优点,其承载能力增大改善了易碎性质。化学钢化玻璃的耐急冷急热性质较之普通玻璃有2~3倍的提高,一般可承受150LC以上的温差变化,对防止热炸裂有明显的效果。
碳化玻璃也叫碳光板,是由精选石英砂通过二次高温处理所形成的板材。
优点:
抗划痕:产品因碳化添加物质,整体硬度高达莫氏7.5度以上,只有金刚石(钻石)类物体才会对其表面造成轻微划痕,其他任何物体均不会在其表面留下痕迹.
绿色环保:产品高密度结晶,纳米碳降解物质添加,对食物无任何污染,可与食品直接接触,无毒、无污染、绿色环保产品
高光泽:产品表面平整度达到1/1000颗粒度,反光度达到95度,使反光折射景物清晰毕现,整体橱?浴柜展示及其引人注目。
抗冲击:因本身强韧度极高仅2mm厚度,用300克钢球1米高度自由下落也不会对其造成任何损伤。
无色差:使用原装英国SERICOL色可丽彩涂原料,电脑记忆色比度分辩设备喷涂,长时间、多批次生产也不会产生色差问题。
抗重压:纳米碳化瞬间煅烧工艺,2mm厚度可载重150公斤的重量,强韧度让人惊叹!
阻燃:产品本身就是经1000度高温成型,普通明火烧灼不会给产品表面带来任何损伤。
防潮湿:产品密度接近宝石级,表面无孔隙,任何液体都不会渗透。
耐老化:超强抗紫外线透射,英国SERICOL色可丽高附着彩色涂层,色彩内透工艺,历久长新。
耐腐蚀:高密度纳米产品,强酸、强碱(除氢氟酸外)等化学腐蚀试剂都不会给产品带来任何腐蚀。
问题十:什么是碳化玻璃 碳化玻璃又叫碳光板。碳光板由精选石英砂通过二次高温处理所形成的板材。
如何正确选用陶瓷刀具材料
陶瓷刀具材料是一种先进的切削刀具材料,因其优良的切削性能和高性价比而备受青睐。本文介绍了近十几年来发展迅速的陶瓷刀具材料的性能及品种,并针对不同类型陶瓷刀具材料的性能优劣,给出选用建议。
潜质巨大的新型刀具材料
随着现代科学技术和生产的发展,各种新型的难加工材料在产品中大量应用,传统的硬质合金刀具已难以满足生产需要,而陶瓷刀具则以其优异的耐热性、耐磨性、良好的化学稳定性和高性价比而受到了人们的青睐。尤其是在高速切削领域和难加工材料方面,显示出了传统刀具无法比拟的优势。
利用陶瓷刀具加工普通钢、铸铁、淬硬钢、高锰钢、镍基高温合金、粉末冶金烧结件、玻璃钢和各种工程塑料等难加工材料时,刀具寿命可比硬质合金刀具高几倍甚至十几倍。在生产中它不但能用于一般的车、镗和铣削加工,而且已成功地用于孔加工刀具上;除可在普通机床上使用外,也能有效地用于数控机床和加工中心等高效设备上,被国际上公认为是当代提高生产效率最有潜质的一种刀具。此外,与金刚石和立方氮化硼等超硬刀具相比,陶瓷刀具的价格相对较低(陶瓷刀具的主要原料氧化铝、氧化硅等是地壳中最丰富的成份,取之不尽,用之不竭),因此,有人认为:“随着现代陶瓷刀具材料性能的不断改进,今后它将与涂层硬质合金刀具、金刚石和立方氮化硼等超硬刀具一起成为高速切削、干切削和硬切削的三种主要刀具。”图1所示为用陶瓷刀具以硬车削出的而不是磨削出的渗碳淬硬传动齿轮(57 HRC-59 HRC)的同步圆锥部分、内孔和背面的应用实例。
陶瓷刀具材料的性能优劣
与硬质合金刀具相比,陶瓷刀具硬度高达92-95 HRA,耐磨性好,在相同条件下加工钢料时,它的磨损仅为P10(YT15) 硬质合金刀具的1/15,刀具寿命长。同时,陶瓷刀具与钢铁等金属材料的亲和力小,摩擦系数低,抗黏结和抗扩散能力强,切削时不易黏刀及产生积屑瘤,加工表面质量好。陶瓷刀具的耐热性也很好,在1,200℃时仍能保持80HRA左右的高硬度,所以适合在高温下进行高速切削和干切削,而价格又远低于切削性能与之相近的金刚石和立方氮化硼刀具。表1中列出了陶瓷与常用硬质合金两种材料性能的对比。
从表1中可以看出,陶瓷刀具的主要缺点是抗弯强度、断裂韧度和弹性模量低,脆性大。长期以来主要作为精加工刀具,占各类刀具材料中的比重很小。但近十几年来,由于材料科学和制造技术的进步,通过控制原料纯度和晶粒尺寸,用了热压和热等静压烧结工艺等方法(用热压烧结制成的陶瓷,其强度和硬度都比过去冷压法好;而用热等静压法制成的陶瓷,其组织致密,强度更高﹐抗崩刃性能好),添加各种碳化物、氮化物、硼化物和氧化物等可改善陶瓷的性能,并通过颗粒、晶修、相变、微裂纹和几种增韧机制的协同作用提高其断裂韧度和强度,不仅使陶瓷的抗弯强度提高到0.9-1.0 GPa(最高可达1.3-1.5 GPa,已与硬质合金相当),而且使其抗冲击性能也有很大提高,应用范围日益扩大,除可用于一般精加工与半精加工外,还可用于冲击负荷下的粗加工。
陶瓷刀具材料的品种分类
现代陶瓷刀具材料大多数为复合陶瓷,其种类及可能的组合如图2所示。目前国内外广泛使用的陶瓷刀具材料以及正在开发的陶瓷刀具材料,基本上都是根据图2所示方法组合,取不同的增韧补强机制来进行显微结构设计的,其中以氧化铝(Al2O3)基和氮化硅(Si3N4 )基陶瓷刀具材料的应用最广泛。
氧化铝(Al2O3)基陶瓷刀具材料
纯氧化铝陶瓷
纯氧化铝陶瓷中的Al2O3成份占99.9%以上,多呈白色,俗称白陶瓷。这是早期使用的陶瓷,由于其强度低,抗热振性及断裂韧性较差,切削时易崩刃,只适用于300HBW以下的铸铁和钢的连续表面粗加工和半精加工,使用范围非常有限,故目前已被其它各种Al2O3基复合陶瓷所取代。
氧化铝-碳化物系复合陶瓷
它是在Al2O3基体中加入TiC或SiC等成份经热压烧结而成的陶瓷,是目前国内外使用最多的陶瓷刀具材料之一。氧化铝-碳化物系复合陶瓷适于加工各种钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、轴承钢、不锈钢、淬硬钢等)和各种铸铁(包括冷硬铸铁、高铬铸铁等),也可加工铜合金、石墨、工程塑料和复合材料;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。
纳米金属陶瓷刀具
它是在传统的Al2O3 / TiC金属陶瓷中通过加入纳米材料TiN(氮化钛)和AlN(氮化铝),经改性而成的一种新型Al2O3基陶瓷刀具,可细化晶粒和优化材料力学性能。使用表明,这是高技术含量及高附加值的新型刀具,可部分取代K20(YG8)、P10(YT15)等面广量大的硬质合金刀具,刀具寿命可提高2倍以上,生产成本则与K20(YG8)刀具相当或稍低。目前,纳米陶瓷及纳米复合陶瓷刀具已成为高技术陶瓷材料研究开发的一个前沿领域。
Al2O3 / SiCw晶须增韧陶瓷
在Al2O3陶瓷基体中添加20%-30% SiCw晶须(是直径小于0.6μm,长度为10?80μm的单晶,具有一定的纤维结构,抗拉强度为7 GPa,抗拉弹性模量超过700 GPa)而成的Al2O3 / SiCw晶须增韧陶瓷,可有效地用于断续切削及粗车、铣削和扩孔等工序,适于加工镍基合金、高硬度铸铁和淬硬钢等材料。SiCw晶须作用类似钢筋混凝土中的钢筋,能成为阻挡或改变裂纹发展的障碍,使其韧性大幅度提高。
Al2O3 /(W,Ti)C梯度功能陶瓷
它是通过控制陶瓷材料的组成分布以形成合理的梯度,从而使刀具内部产生有利的残余应力分布来抵消切削中的外载应力。具有表层热导率高、有利于切削热的传出、热膨胀系数小、结构完整性好、不易破损等特点。用其加工钢铁材料时的刀具寿命可比同类Al2O3/(W, Ti)C复合陶瓷SG-4高1-1.5倍,并且刀具有很好的自砺性,崩刃后仍能进行正常切削。
Al2O3 / TiB2 和Al2O3 / ZrO2 等复合陶瓷
在Al2O3中添加TiB2、Ti(C,N) 、ZrO2等成份的陶瓷可进一步提高材料的物理机械性能和切削加工性能,其中以Al2O3 / TiB2和Al2O3 / ZrO2使用较多。如用Al2O3/ TiB2陶瓷刀具加工40CrNiMoA钢时,刀具寿命为Al2O3/ TiC刀具的3倍,加工4Cr5MoVSi钢时,刀具抗边界磨损能力为Al2O3 / TiC刀具的2倍。而Al2O3 / ZrO2陶瓷刀具材料的断裂韧度、强度和耐磨性高,抗崩刃性能好。如用CC620刀片粗车和半精车铸铁和球墨铸铁等材料,切削速度可达900 m/min;用于加工合金钢时,粗车切削速度可达200 m/min,精车切削速度可达800 m/min。
氮化硅(Si3 N4)基陶瓷刀具材料
Si3N4陶瓷是一种非氧化物工程陶瓷,其硬度可达1,800-2,000 HV,热硬性好,能承受1,300-1,400℃的高温,与碳和金属元素化学反应较小,摩擦系数也较低。这类刀具适于切削铸铁、高温合金和镍基合金等材料,尤其适用于大进给量或断续切削。由于纯Si3N4 陶瓷刀具在切削长切屑(如软钢)时极易产生月牙洼磨损,所以新一代Si3N4 陶瓷均为Si3N4 复合陶瓷刀具。最新的Si3N4 复合陶瓷不仅可用于粗加工,而且可用于断续切削和有冷却液的切削。目前Si3N4基陶瓷刀具的崩刃率为2%-3%,与硬质合金相当,可以大量应用于生产线。该类陶瓷刀具的缺点是加工性比普通Al2O3陶瓷差。
Si3 N4 / TiC复合陶瓷
其韧性和抗弯强度高于Al2O3基陶瓷,而硬度却不降低;热导率亦高于Al2O3基陶瓷,故在生产中应用比较广泛。
Si3 N4 / SiCw晶须增韧陶瓷
它是在Si3N4基体中加入一定量的碳化物晶须而成,从而可提高陶瓷刀具的断裂韧度。中国生产的牌号有SW21(Si3N4/ SiCw)与FD03(Si3N4/TiCw)等。一些国外切削专家认为,用Si3N4基陶瓷切削钢材的效果不如Al2O3 基复合陶瓷,故不推荐用其加工钢材。但用FD03刀片切削淬硬钢(60-68HRC)、高锰钢、高铬钢和轴承钢时也有较好的效果。
赛阿龙(Sialon)陶瓷
它是以Si3N4为硬质相,Al2O3 为耐磨相,并添加少量助烧结剂Y2O3,经热压烧结而成,常称赛阿龙(Sialon)。Sialon实际上是Si3N4中Si、N原子被Al和O原子置换所形成的一大类固溶体的总称,主要有β-Sialon、α-Sialon、O-Sialon 3种,尤以前两种最为常见。这种陶瓷的抗弯强度和断裂韧度较高,抗氧化能力和高温抗蠕变能力好,热导率高,热膨胀系数小,抗热振性好,适于粗车及铣削铸铁和镍基高温合金等难加工材料。除能用较大的进给量及切削速度高速加工铸铁和高温合金外,并可在面铣刀上用双正前角(侧前角和背前角均为正值)。
涂层Si3N4陶瓷刀具
Si3N4基陶瓷的韧性优于Al2O3基陶瓷,但其耐磨性稍差。切削铸铁时,Si3N4陶瓷刀具的后刀面磨损大于Al2O3陶瓷刀具;切削钢料时,Si3N4陶瓷刀具的月牙洼磨损较大。为此,国外在Si3N4基陶瓷表面上施以TiN、TiC、Ti(C﹐N)和Al2O3等涂层,可单涂层,也可用多涂层。经涂层后的Si3N4陶瓷刀具磨损量为未涂层的1/3,使加工普通铸铁的切削速度达到200?1,000 m/min,并且刀具寿命更长。比如Sandvik公司的GC1690涂层氮化硅陶瓷刀具,在加工高强度灰铸铁时的进给量达0.4 mm/r,切削速度为500 m/min。山高(Seco)刀具公司的涂层氮化硅陶瓷刀具,切钢时抗月牙洼磨损的能力强,其切削速度可达Al2O3基陶瓷刀具的切削速度,但进给量却大于后者而接近涂层硬质合金刀具,使材料切除率大大提高。
如何选用陶瓷刀具材料
目前,Al2O3基陶瓷和Si3N4基陶瓷均已成功地用于制作车刀、镗刀和铣刀等的切削部分材料。陶瓷刀具的结构目前大多用机夹可转位刀片的结构形式。刀片的形状有三角形、正方形、长方形、棱形和圆形等。
陶瓷刀片材料的品种多达几十种,不同种类的陶瓷刀片有着不同的应用范围,故须正确选择刀具陶瓷的种类与牌号,使其与被加工材料相“匹配”。除需要满足技术要求外,还应满足经济和环保性能的要求。
氧化铝(Al2O3)基陶瓷具有良好的耐磨性、耐热性,且其高温化学稳定性好,不易与铁元素之间发生相互扩散或化学反应,其耐磨性和耐热性均高于氮化硅(Si3N4)基陶瓷刀具,所以Al2O3基陶瓷刀具的应用范围最广,适于对钢材、铸铁及其合金的高速切削加工;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。
氮化硅(Si3N4)基陶瓷刀具的断裂韧性和抗热振性高Al2O3基陶瓷刀具,最适于断续加工铸铁和高温合金等材料,一般不宜用来加工产生长切屑的钢材(如正火和热轧状态),用Si3N4基陶瓷刀具切削45号钢时的刀具磨损比切削灰铸铁时高得多。
赛阿龙(Sialon)陶瓷最适于加工各种铸铁(如灰铸铁、球墨铸铁、冷硬铸铁、高合金耐磨铸铁等)和耐热合金,通常不推荐用其加工钢材。
Inconel 718(GH169)镍基合金是典型的难加工材料,具有较高的高温强度、动态剪切强度,热扩散系数较小,切削时易产生加工硬化,导致刀具切削温度高、磨损速度加快。Al2O3 / SiCw晶须增韧陶瓷适合于加工硬度低的镍基合金,当切削速度为100?300 m/min时可获得较长的刀具寿命;ISCAR公司生产的一款IW7晶须增韧陶瓷(Al2O3 / SiCw)新牌号,来自加工Inconel 718、镍基耐热合金等高温合金材质涡轮盘的报告显示,相比于其它陶瓷刀片,切削性能和刀具寿命均有明显提高。Si3N4基陶瓷也可用于Inconel 718合金的加工。而Sialon陶瓷的韧性高,适合于切削经过固溶处理的Inconel 718(45HRC)合金。
此外,航空航天用的Kevlar和石墨类复合材料,用陶瓷刀具可实现切削速度300 m/min左右的高速切削加工。
必须指出,陶瓷刀片不像硬质合金那样在国际上有统一的分类,各生产厂都有各自的品种与牌号,不同厂生产的同类刀片性能上也有一定的差异,使用时须参照厂家产品样本来选择。为此,刀片牌号选定后必须在机床上先进行试切削,合格后方可以正式应用。
陶瓷刀具的应用建议
陶瓷刀具改变了传统的机械加工工艺,解决了生产中以前很多难以解决的加工问题。目前广泛应用于机械、治金、矿山、高速列车、风电、汽车、拖拉机、轴承、水泵、交通、能源、精密仪器、航空航天等行业并取得了显着的经济效益。
中国在陶瓷刀具的研究与开发方面具有优势,早在20世纪50年代就已在生产中使用。例如,中国开发的陶瓷与硬质合金复合刀片(FH系列),工件表面既有陶瓷材料高的硬度与耐磨性,而基体又有硬质合金较好的抗弯强度,其等效抗弯强度比同类陶瓷刀片平均提高20%,断裂韧度平均提高8.5%,而其抗破损能力提高更大,故能承受冲击负荷,并解决了陶瓷刀片镶焊困难等问题。此外,近几年国内外开发的刀具陶瓷新品种,比如适于加工各种铝合金(包括硅含量高的铝合金)的ZrO2基陶瓷、TiB2基陶瓷(硬度是氮化硅的2倍,其性能介于硬质合金和超硬材料CBN之间,用其加工淬硬钢和高温合金等材料时的刀具寿命可比硬质合金刀具长5-6倍),尽管它们的生产至今还未形成规模,但因性能优异﹐有广泛的用途,今后必将迅速发展。
使用陶瓷刀具的机床必须具有高刚度、大功率、高转速和高精度特点,这样才能充分发挥陶瓷刀具材料的性能,取得好的经济效益。此外,装夹工件的夹具和夹紧装置,必须可靠性强,以免加工时产生振动,使刀具破损。必须指出的是,目前生产中不少机床设备还不能满足陶瓷刀具的加工要求,所以它们的潜力未能得到充分发挥,今后随着数控机床和加工中心等高效设备应用的增多,必将进一步推动陶瓷刀具的使用。
由于陶瓷刀具材料的脆性较大,强度较低,故刀具前角通常取0°-10°,后角5°-12°。为了提高切削刃强度,刃口上须磨出负倒棱,倒棱宽度可取b =0.1-0.8 mm,倒棱前角 -10°- -20°;刀尖需适当修圆,修圆半径r =0.2-1.0mm。但刀尖修圆半径和负倒棱越大,会使切削力增大,发生颤振的机会也增多。因此当机床—夹具—刀具—工件的系统刚性不足时,尤其是在加工细长工件时,不宜用过大的刀尖半径和负倒棱。
由于陶瓷刀具有良好的耐热性和耐磨性,故切削用量对刀具磨损影响比硬质合金刀具小。因此,切削时应根据被加工工件材料性质,在机床功率、工艺系统刚性和刀片强度允许前提下,尽量选用较大的背吃刀量(吃深)和切削速度进行切削,以充分发挥陶瓷刀具材料高温性能好的特点。而部分企业在使用陶瓷刀具时,认为用较低切削速度可延长刀具的使用寿命。切削速度﹐车削普通钢和铸铁,一般Vc=200-600 m/min;加工硬度小65HRC的高硬度钢Vc=60-200 m/min;铣削钢和铸铁Vc=200-500 m/min;铣削耐热合金Vc=100-250 m/min,进给量0.05-0.08 mm/z 。
陶瓷刀具的刃磨应在工具磨床上用夹具刃磨,以保证刃磨质量。刃磨陶瓷刀具目前大多用树脂结合剂的金刚石砂轮,其磨削质量对刀具切削性能有很大影响。对于可转位陶瓷刀片,原则上是不重磨的,因为重磨后其刀片的装夹尺寸及定位尺寸都会发生变化,在CNC机床加工中就要重新调整进刀尺寸,以保证工件尺寸的一致性。但一些工厂为了降低消耗,物尽其用,也可在工具磨床或刀具刃磨机上用金刚石砂轮进行刃磨,粗磨选用F80-F120粒度号,精磨、细磨用F180?F400粒度号,浓度为50%-100%,硬度为K-P级。刃磨时的切削用量可取:磨削速度20-30m/s,磨削深度f =0.005-0.02 mm/双行程(粗磨时取大值,精磨、细磨时取小值),工作台速度为V =10-15 m/min。
纳米wc硬质合金在哪些领域有应用
纳米WC-Co硬质合金,因其特殊的耐磨蚀、高硬度,以及优异的断裂韧性和抗压强度被广泛应用于现代科技各个领域,己被制成加工集成电路板的微型钻头、点阵打印机打印针头、整体孔加工刀具、木工工具、精密模具、牙钻、难加工材料刀具等。其主要应用概括为以下几个方面:
(1)金属加工。当初,亚微细WC硬质合金的开发是为了解决高温合金等难加工材料的切削加工的需要,现代纳米WC硬质合金在强度和韧性方面优于亚微细合金,因而更适用于高温合金、钛合金、不锈钢、各种喷涂(焊)材料、淬火钢、冷硬铸铁等的加工。纳米WC硬质合金突破了普通硬质合金的抗弯强度远比高速钢低这个局限,其应用已延伸到高速钢占统治地位的领域。
(2)电子工业。电子工业产品的发展趋势是小型化、集成化、精密化。集成电路板材质是环氧树脂粘结玻璃纤维或玻璃纤维增强的塑料。这就要求微型钻头有很高的硬度和耐磨性;而钻头直径很小(一般0.2~0.3mm,甚至0.05mm)、易折断,还要求钻头有高的强度和韧性:并且钻孔需要正确的孔位精度,又要求钻头有高的刚度(弹性模量),这些要求相互矛盾。致使普通硬质合金以及亚微细晶粒硬质合金钻头都难以满足这些要求,只有用晶粒度小于0.5?m的纳米晶粒硬质合金才行。又如点阵打印针,其直径仅有0.2-0.35mm;加工集成电路引线的框架用的多工位跳步模,冲头厚度≤0.2mm,误差仅为0.002mm;另外还有印刷电路板引线切头用的圆片切刀,以及精密的小模具等,都要求使用纳米晶粒WC硬质合金来制作以实现其功能。
(3)木材加工。早在50年代,硬质合金镶尖工具就被用于木材加工行业。而今,各种材质的板材的出现,对加工精度和外观的要求大大提高,高速切割时的离心力、切削力使普通硬质合金难以满足加工要求,于是纳米晶粒WC硬质合金有了用武之地。
(4)医学应用。医用牙钻是精细仪器,其切口必须锋利,而且要求具有很好的耐磨性和韧性,超细晶粒WC硬质合金以其高强度、高韧性和耐磨性在这一领域得到广泛的应用。
(5)其它应用。纳米晶粒WC硬质合金由于其晶粒细小,作刀具可以磨出精度极高、锋利的切削刃和刀尖圆弧半径;因其高强度就可用于制作大前角、小进给量和小吃刀量的精细刀具,如小直径立铣刀、小铰刀等;因其高弹性模量、抗磨擦磨损性能,可用于制作高精度模具、冲头等;另外还可用于制作高耐磨、耐冲蚀工具,如高压喷嘴、阀门、高压枪、玻璃刀、纺织品切刀以及磁带、录相带切刀等等。另外科学家们还正在研制圆形刀具、凿岩刀具以及纳米WC-Co基增强复合材料等。
因此开发纳米WC硬质合金和寻求更为广阔的应用领域成为发展的热点,而制备的关键技术在于纳米原料粉末的制备及随后的烧结过程。减小粒径是提高WC-Co硬质合金性能(强度、硬度和抗磨性钧的有效途径,因此研制纳米晶硬质合金是下阶段研究者的开发重点,它将大大拓宽WC-Co硬质合金的应用领域,并因此带动各种精密仪器、模具、刀具及电子通信技术的飞速发展。
粉末冶金常见产品
近日,景德镇新纪元精密陶瓷有限公司研发的三项纳米陶瓷新产品“纳米环保陶瓷刀”、“氧化锆基陶瓷内螺旋轴衬”“氧化锆复相陶瓷外螺旋轴套”通过了省专家组的鉴定。专家一致认为:以上三项新产品研制开发符合国家技术产业政策和工业陶瓷发展方向,其技术达到国际先进、国内领先水平。目前,这三项产品均列入江西省2006年度重点新产品项目;其中:“氧化锆基陶瓷内螺旋轴衬”、“氧化锆复相陶瓷外螺旋套”两项新品填补了国内空白,这三项新产品都是归国学者谢志鹏教授的科研成果。
纳米陶瓷新材料具有高强度、高硬度、高韧性、耐高温、耐腐蚀的特点及优良的化学稳定性和生物相容性功能,是一般金属材料和有机高分子材料无法比拟的,世界发达国家把纳米陶瓷材料列为二十一世纪新材料。氧化锆基陶瓷材料是一类新型结构陶瓷材料,与普通氧化锆相比除保持高强度和高韧性外,其硬度、耐磨性、耐热性都有显著提高。以瓷代钢已在信息电子、冶金、机械、石油化工、航空航天、生命科学等领域广泛应用。谢志鹏教授将自己在国外多年潜心研究的纳米陶瓷新材料、高性能氧化锆基陶瓷材料成果与特陶公司合作,在该市陶瓷科技园共同创建科技型企业——景德镇新纪元精密陶瓷有限公司,公司则根据市场的需求,开发出的“纳米环保陶瓷刀”可以做到永不生锈,比金属刀硬度更高、耐磨性更好,能解决切削食物的表面氧化,真正体现了现代人的健康环保、时尚新理念。“氧化锆基陶瓷内螺旋轴衬”在污水处理设备上替代硬质合金材料应用,具有比硬质合金材料更耐腐蚀、更耐磨、不生锈、使用寿命长、设备效率大幅度提高的特点。“氧化锆复相陶瓷外螺旋轴套”是用于火力发电和燃油锅炉等离子点火器配套产品,可以实现煤粉锅炉无油点火和稳定燃烧,大幅度节省能源,具有可观的经济效益和巨大的社会效益。
据悉,新产品研制成功后,已小批量试产投入市场,市场需求大并有大量订单。企业现已具备了年产2万套“纳米环保陶瓷刀”、年产1万只“氧化锆基陶瓷内螺旋轴衬”和年产1.2万只“氧化锆复相陶瓷外螺旋轴套”的规模。预计2006年新纪元精密陶瓷有限公司销售收入可过1500万元,成为景德镇工业陶瓷的又一支柱企业。
纳米陶瓷纤维:目前国内各种牌号无碱玻璃纤维的产量已超过50万吨,市场售价12000~20000元/吨。高强玻璃纤维(拉伸强度>3000MPa,弹性模量<70GPa的市场售价为50000~55000元/吨,市场需求量达3000吨。本项目开发的纳米陶瓷纤维的强度和模量均远远超过高强玻璃纤维,销售价格定位在45000元/吨,其市场竞争力是显而易见的。
纳米陶瓷微珠:主要用作精细化工、涂料、油漆等行业中的砂磨机用研磨体,也可应用于化工反应塔中的填料。与目前市场上使用的玻璃质研磨体、普通陶瓷质研磨体、氧化铝陶瓷研磨体和氧化锆研磨体比,其主要技术经济指标对比如下表,显然,纳米陶瓷微珠具有极强的市场竞争力,可很快成为研磨体市场的新宠。
纳米陶瓷纺织瓷件:包括陶瓷摩擦片、导线轮和止捻器。目前纺织机械用陶瓷部件的材质主要是氧化铝和氧化锆两种类型。氧化铝陶瓷的硬度高,但晶粒尺寸较大,一般为5-10mm,残留气孔率也在2%左右,因此其表面光洁度和耐磨性都不太理想。氧化锆陶瓷的硬度较低,但晶粒尺寸为0.5-1mm,残留气孔率可小于1%,用作纺织瓷件时具有自润滑性,因此,其耐磨性和使
用寿命优于氧化铝陶瓷,但价格也高出氧化铝陶瓷一倍以上。本项目开发的纳米陶瓷比氧化锆陶瓷的晶粒更细小,结构更致密,硬度相近,同样具有自润滑性,因此,是制造纺织瓷件最理想的材料,而且同规格纳米陶瓷部件的售价只有氧化铝陶瓷的70%,氧化锆陶瓷的30%左右,进入国际市场的潜力也很大。
电子结构陶瓷:主要替代滑石瓷和氧化铝陶瓷用作电子装置用各种绝缘子、管座、电阻基体和密封外壳等。由于本项目用的工艺技术路线具有生产效率高、产品的均匀性和可靠性好等特点,而售价比滑石瓷和氧化铝陶瓷更低,且有利于提高电子元器件的稳定性和可靠性,在市场开拓中也具有明显优势。
纳米的资料
纳米
新科技
纳米(符号为nm)是长度单位,原称毫微米,就是10^-9米(10亿分之一米),即10^-6毫米(100万分之一毫米)。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。举个例子来说,设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是1纳米。2012年5月,最新的中央处理器制程是22nm。
基本信息
中文名:纳米
作用:度量单位
其他名称:毫微米
外文名:nm
基本含义
单个细菌用肉眼是根本看不到的,用显微镜测直径大约是五微米。举个例子来说,设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60m2/g时,其直径将小于100nm,达到纳米尺寸。
现时很多材料的微观尺度多以纳米为单位,如大部份半导体制程标准皆是以纳米表示。直至2012年6月,最新的中央处理器制程是22nm。
发展历程
纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
雨衣伞
纳米雨衣伞
纳米雨衣伞是雨伞和雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。因为纳米材料,所以这雨伞可以一甩即干,雨伞转变为雨衣后,这雨衣也只需穿戴着轻轻一跳也即可全干。
三种概念
第一种
从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。
第二种
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
综合
纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究,进行相关研究。
特点
电子器件
以纳米技术制造的电子器件,其性能大大优于传统的电子器件:工作速度快,纳米电子器件的工作速度是硅器件的1000倍,因而可使产品性能大幅度提高。功耗低,纳米电子器件的功耗仅为硅器件的1/1000。信息存储量大,在一张不足巴掌大的5英寸光盘上,至少可以存储30个北京图书馆的全部藏书。体积小、重量轻,可使各类电子产品体积和重量大为减小。纳米材料“脾气怪”纳米金属颗粒易燃易爆 几个纳米的金属铜颗粒或金属铝颗粒,一遇到空气就会产生激烈的燃烧,发生爆炸。因此,纳米金属颗粒的粉体可用来做成烈性,做成火箭的固体燃料可产生更大的推力。用纳米金属颗粒粉体做催化剂,可以加快化学反应速率,大大提高化工合成的产出率。
金属块
纳米金属块体耐压耐拉 将金属纳米颗粒粉体制成块状金属材料强度比一般金属高十几倍,又可拉伸几十倍。用来制造飞机、汽车、轮船,重量可减小到原来的十分之一。
陶瓷
纳米陶瓷刚柔并济 用纳米陶瓷颗粒粉末制成的纳米陶瓷具有塑性,为陶瓷业带来了一场革命。将纳米陶瓷应用到发动机上,汽车会跑得更快,飞机会飞得更高。
氧化物
纳米氧化物材料五颜六色 纳米氧化物制备磁性纳米晶体材料新方法.制备磁性纳米晶体材料新方法.颗粒在光的照射下或在电场作用下能迅速改变颜色。用它做士兵防护激光枪的眼镜很好,将纳米氧化物材料做成广告板,在电、光的作用下,会变得更加绚丽多彩。纳米半导体材料法力无边纳米半导体材料可以发出各种颜色的光,可以做成小型的激光光源,还可将吸收的太阳光中的光能变成电能。用它制成的太阳能汽车、太阳能住宅有巨大的环保价值。用纳米半导体做成的各种传感器,可以灵敏地检测温度、湿度和大气成分的变化,在监控汽车尾气和保护大气环境上将得到广泛应用。
药物
纳米药物治病救人,把药物与磁性纳米颗粒相结合,服用后,这些纳米药物颗粒可以自由地在血管和人体组织内运动。再在人体外部施加磁场加以导引,使药物集中到患病的组织中,药物治疗的效果会大大提高。还可利用纳米药物颗粒定向阻断毛细血管,“饿”死癌细胞。纳米颗粒还可用于人体的细胞分离,也可以用来携带DNA治疗基因缺陷症。目前已经用磁性纳米颗粒成功地分离了动物的癌细胞和正常细胞,在治疗人的骨髓疾病的临床实验上获得成功,前途不可限量。
卫星
纳米卫星将飞向天空 在纳米尺寸的世界中按照人们的意愿,自由地剪裁、构筑材料,这一技术被称为纳米加工技术。纳米加工技术可以使不同材质的材料集成在一起,它既具有芯片的功能,又可探测到电磁波(包括可见光、红外线和紫外线等)信号,同时还能完成电脑的指令,这就是纳米集成器件。将这种集成器件应用在卫星上,可以使卫星的重量、体积大大减小,发射更容易,成本也更便宜。
成果
9月27日,中国科学院化学所的专家宣布研制成功新型纳米材料———超双疏性界面材料。这种材料具有超疏水性及超疏油性,制成纺织品,不用洗涤,不染油污;用于建筑物表面,防雾、防霜,更免去了人工清洗。专家称:纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。 随着科学家的一次次努力,“纳米”这个几年前对我们还十分生疏的字眼,眼下却频频出现在我们的视线。 纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。90年代起,各国科学家纷纷投入一场“纳米战”:在0.10至100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。
中国当然不甘人后,1993年,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着我国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。
1998年,清华大学范守善小组在国际上首次把氮化镓制成一维纳米晶体。同年,我国科学家成功制备出金刚石纳米粉,被国际刊物誉为:“稻草变黄金———从四氯化碳制成金刚石。”
1999年,北京大学教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。
中科院成会明博士领导的研究组合成出高质量的碳纳米材料,被认定为迄今为止“储氢纳米碳管研究”领域最令人信服的结果。
中科院物理所研究员解思深领导的研究组研制出世界上最细的碳纳米管———直径0.5纳米,已十分接近碳纳米管的理论极限值0.4纳米。这个研究小组,还成功地合成出世界上最长的碳纳米管,创造了“3毫米的世界之最”。
在主题为“纳米”的争夺战中,中国人频频露脸,尤其在碳纳米管合成以及高密度信息存储等领域,中国实力不容小觑。防辐射孕妇装。防辐射孕妇装。科学界的努力,使“纳米”不再是冷冰冰的科学词,它走出实验室,渗透到百姓的衣食住行中,居室环境日益讲究环保。传统的涂料耐洗刷性差,时间不长,墙壁就会变得斑驳陆离。现在有了加入纳米技术的新型油漆,不但耐洗刷性提高了十多倍,而且有机挥发物极低,无毒无害无异味,有效解决了建筑物密封性增强所带来的有害气体不能尽快排出的问题。
人体长期受电磁波、紫外线照射,会导致各种发病率增多或影响正常生育。现在,加入纳米技术的高效防辐射服装———高科技电脑工作装和孕妇装问世了。科技人员将纳米大小的抗辐射物质掺入到纤维中,制成了可阻隔95%以上紫外线或电磁波辐射的“纳米服装”,而且不挥发、不溶水,持久保持防辐射能力。同样,化纤布料制成的衣服因摩擦容易产生静电,在生产时加入少量的金属纳米微粒,就可以摆脱烦人的静电现象。白色污染也遭遇到“纳米”的有力挑战。科学家将可降解的淀粉和不可降解的塑料通过特殊研制的设备粉碎至“纳米级”后,进行物理结合。用这种新型原料,不沾水的纳米伞。不沾水的纳米伞。可生产出100%降解的农用地膜、一次性餐具、各种包装袋等类似产品。农用地膜经4至5年的大田实验表明:70到90天内,淀粉完全降解为水和二氧化碳,塑料则变成对土壤和空气无害的细小颗粒,并在17个月内同样完全降解为水和二氧化碳。专家评价说,这是彻底解决白色污染的实质性突破。
从电视广播、书刊报章、互联网络,我们一点点认识了“纳米”,“纳米”也悄悄改变着我们。纳米精确新闻 1959年 理论物理学家理查·费伊曼在加州理工学院发表演讲,提出,组装原子或分子是可能的。
1981年,科学家发明研究纳米的重要工具———扫描隧道显微镜,原子、分子世界从此可见。
1990年,首届国际纳米科技会议在美国巴尔的摩举办,纳米技术形式诞生。
1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是铁的10倍,成为纳米技术研究的热点。
继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字,1999年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室操纵原子成功写出“中国”二字。
19年,美国科学家首次成功地用单电子移动单电子,这种技术可用于研制速度和存储容量比现在提高成千上万倍的量子计算机。同年,美国纽约大学科学发现,DNA可用于建造纳米层次上的机械装置。
1999年,巴西和美国科学家在进行碳纳米管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”,打破了美国和巴西科学家联合创造的纪录。同年,美国科学家在单个分子上实现有机开关,证实在分子水平上可以发展电子和计算装置。 美国加利福尼亚州Pasadena市的喷气飞机推进器实验室目前正在研制一种被称为“纳米麦克风”的微型扩音器,据《商业周刊》报道,这种微型传感器可以使科学家倾听到正在游弋的单个细菌的声音,以及细胞体液流动的声音。这种人造纳米麦克风由细微的碳管制成,正是因为构成物体积细小和灵敏度极高,这种麦克风才能够在受到非常小的压力作用下作出反应,使得对其进行监测的研究人员获得相关的声音信息。
利用这种新产品,科学家将可以对其他星球上是否存在生命进行探测,可以探测到生物体内单个细胞的生长发育。这一仪器研制项目已获得美国航空航天局(NASA)的批准,而且NASA还向上述实验室提供了必要的技术支持。
防
据《人民日报》报道,最近,广州一家公司宣称生产出一种用麦饭石和纳米特殊材料制作而成的“纳米珠”,只要把它放在水里,多脏的水也能喝。长期饮用“纳米水”,可抗疲劳,耐缺氧,甚至“增强女士防匪徒的能力”。据了解,每盒纳米珠要300元,买齐整套设备(一台饮水机、一桶水和十盒纳米珠)则需3800元。76岁的何姓老人在推销员的百般说服下,不但相信纳米水的神奇疗效,还看中了纳米水的销售方式。老人背着家里人一共拿出22万元,买下75套纳米水机套装产品,然后等着每月2万元钱的分红。
广州市工商局东山分局经济检察中队在4月3日查处了该公司,其准备创造科技神话的纳米水根本没有科技鉴定说明,该公司的纳米水套装产品既无生产许可证,也没有产品合格证。
吹动物体
纳米世界,光也能“吹动”物体。当光照射在物体上,也会对物体产生作用力,就像风吹动帆一样。从儒勒·凡尔纳到阿瑟·C·克拉克,科幻作家们不止一次幻想过运用太阳光的作用力来推动“太阳帆”,驱动飞船在星际中航行。然而,在地球上,太阳光的作用力实在微乎其微,没有人能用阳光来移动一个物体。但是,在11月27日的《自然》杂志上,在美国耶鲁大学从事研究的中国学者发表文章,首次证实在纳米世界里,光真的可以驱动“机器”——由半导体做成的纳米机械。 这项研究,结合了相关图书。相关图书。两个最前沿的纳米科学领域,即纳米光子学和纳米力学。“在宏观尺度上,光的力实在太微弱,没有人能感觉到。但是在纳米尺度上,我们发现光具有相当可观的力,足以用来驱动像集成电路上的三极管一样大小的半导体机械装置。”领导此项研究的耶鲁大学电子工程系教授唐红星这样介绍。其实,此前光的力已经被物理学家和生物学家应用于一种叫做“光镊”的技术中,用来操控原子和微小的颗粒。“我们的研究则是把光集成在一块小小的芯片上,使它的强度增加数百万倍,从而用来操控纳米半导体器件。”这篇论文的第一作者、博士后研究员李墨进一步阐释说。 在耶鲁大学的实验室里,两位科学家和来自北京大学的研究生熊驰及合作者们一起,使用最先进的半导体制造技术,在硅芯片上铺设出一条条光的线路,称之为“光导”。当激光器发出的光被接入这样的芯片后,光就可以像电流在导线里一样,沿着铺好的光导线路“流”动。理论预测,在这样的结构中,光会对引导它的导线产生作用力。为了证实这样的预测,他们把一小段只有10微米长的光导悬空,让它可以像吉他弦般产生振动。如果光确实产生力并作用在它上面,那么当光的强度被调制到和光导的振动一致的频率时,共振就会产生。这样的共振就会在透射的光中产生同样频率的一个峰。这正是3位中国科学家经过半年多的实验和计算,最终在他们的测量仪器上看到的令人信服的现象。之后,他们通过大量实验证明,这个作用力的大小和理论预期非常一致。因为光的速度比电流要快得多,所以这种光产生的力预期可以以几十吉赫兹(GHz)的速度驱动纳米机械。
此项研究成果有望引领出新一代半导体芯片技术——用光来取代电。未来运用这种新技术,科学家和工程师们可以实现基于光学和量子原理的高速高效的计算和通信。
医用
英国伦敦纳米技术中心的研究人员研制出一种新型纳米探针,纳米探针的运动轨迹。纳米探针的运动轨迹。利用该纳米探针可以检测出某种抗生素药物是否能够与细菌结合,从而减弱或破坏细菌对人体的破坏能力,达到治疗疾病的目的。这是科学家第一次将纳米探针运用于药物筛选,相关试验的初步结果已经刊登在最新一期的《自然纳米技术》杂志上。
人们在用抗生素治病的过程中,引起疾病的细菌很容易产生抗药性,从而使得抗生素失去药效。抗生素的作用原理是与致病细菌的细胞壁结合后破坏细胞壁的结构,使得致病细菌死亡,一旦产生抗药性,细菌的细胞壁结构发生改变,细胞壁变厚,抗生素无法与细胞壁结合。
研究人员在一排纳米探针上覆盖组成细菌细胞壁的蛋白质,一旦抗生素与细胞壁结合,探针的表面重量就会增加,这一表面压力会导致纳米探针发生弯曲。通过对万古霉素药物的研究发现,抗药性细菌的细胞壁硬度是非抗药性细菌的1000倍。所以通过纳米探针探测出各种药物对细菌细胞壁的结构改变,筛选出对致病细菌破坏力最大的抗生素。
纳米金属
钴(Co)
高密度磁记录材料。利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。
吸波材料。金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波材料、可见光——红外线材料和结构式材料,以及手机辐射屏蔽材料。
铜(Cu)
金属和非金属的表面导电涂层处理。
高效催化剂。铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
导电浆料。用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。
铁(Fe)
高性能磁记录材料。利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。
导磁浆料。利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。
纳米导向剂。一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。
镍(Ni)
磁流体。用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。
高效催化剂。由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。
高效助燃剂。将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。
导电浆料。电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。
高性能电极材料。用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。
活化烧结添加剂。纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。
金属和非金属的表面导电涂层处理。由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。
锌(Zn)
高效催化剂。锌及其合金纳米粉体用作催化剂。
硬质合金
普通结构硬质合金的耐磨性与韧性相互排斥,协调这种矛盾一直是硬质合金研究方面焦点。研究发现,在硬质合金粘结相含量一定的情况下,当碳化钨(WC)晶粒度减小到0.8μm以下时,不仅合金的硬度提高,而且强度也有提高,随着晶粒度的进一步减小,提高幅度更加明显。
这种兼有高硬度和高强度的硬质合金刀具在加工硬而脆的材料(如冷铸铁等)时显示出优异的使用性能。WC-10Co超细硬质合金的硬度(HRA)可达到93,横向断裂强度大于5000MPa。纳米及超细晶粒硬质合金具有普通硬质合金不可比拟的优越性能,满足现代加工工业以及特种应用领域对新材料加工要求的能力大副提高。纳米及超细结构硬质合金的这种“双高”(高耐磨性、高韧性)性能,特别适用于制造适应高负荷、高应力磨损、锐利、刚性好工具和模具,如印刷电路板(PCB)微钻、V-CUT刀、铣刀等。
关于纳米及超细结构硬质合金的晶粒度问题,目前没有统一的标准。一般认为,晶粒度小于0.5μm的硬质合金为超细硬质合金,晶粒度小于0.2μm的硬质合金为纳米硬质合金。在这方面,瑞典Sandvik和德国粉末冶金协会的分级标准相对权威。
20世纪90年代以来,围绕细化晶粒,制取超细乃至纳米结果硬质合金的研究开发已经成为世界硬质合金技术领域的一大热点。美国Rutgers大学于1989年率先研制成功纳米结构硬质合金并取得专利。纳米结构硬质合金的问世,是硬质合金领域中具有划时代意义的重大突破,为解决硬质合金强度和硬度之间的矛盾开辟了新的途径。
碳纳米管
北京化工大学的段雪院士领导的团队在超短碳纳米管的研究上取得了重大进展。他们基于长期以来对插层材料的坚实研究和深刻认识,利用层状双羟基金属氢氧化物(LDH)的层间空间限域作用,合成了十二烷基磺酸阴离子(DSO)插层的Co-Al LDH。而后以LDH层间的甲基丙烯酸甲酯(MMA)为碳源,通过还原得到的活性金属Co的催化作用,合成生长了长度小于1 nm(分子尺度),外径和壁厚分别约为20 nm和3.5 nm的碳纳米环。
来自美国宾夕法尼亚大学的研究人员于近日发明了一种由碳纳米管(由石墨原子构成的管状物,重量轻,六边形结构连接完美)构成的低密度、超强韧的气凝胶(一种固体物质形态,是世上密度最小的固体),能够在清洁石油泄漏领域起到关键作用。
斯坦福大学发布了首款由碳纳米晶体管组成的电脑芯片。硅晶体管早晚会走到道路的尽头。晶体管越做越小,以至于它不能够容纳下足够的硅原子来展示硅的特性。碳纳米管(CNT),锗化硅(SiGe),砷化物(GaAs)都是可能的替代品。碳纤维纳米管具有良好的传导性,体积小,并且能在刹那间开关。它拥有比肩石墨烯的电气属性,但是制造半导体的难度却小很多。
相关个股
南风化工:南风化工与清华大学合作开发碳纳米管,目前纳米粉体产业化中心开发的"15千克/小时碳纳米管批量生产技术"已通过了教育部的专家鉴定。
中国宝安:碳纳米管的龙头,麻省理工学院的化学工程师通过使用碳纳米管制成的太阳能天线,其利用的太阳能是普通太阳能光伏电池的100倍。
机器人
“纳米机器人”的研制属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。合成生物学对细胞信号传导与基因调控网络重新设计,开发“在体”(in vivo)或“湿”的生物计算机或细胞机器人,从而产生了另种方式的纳米机器人技术。我国著名学者周海中教授1990年在《论机器人》一文中预言:到二十一世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。