油价涨价机制_油价涨跌模型分析
1.石油价格的内容简介
2.国际油价波动分析与预测的目录
3.实证结果分析与讨论
4.国际原油价格影响因素的定量分析
石油价格的内容简介
《石油价格:非市场因素与运动规律》对影响石油价格的非市场因素进行了开创性的研究工作,在一定程度上解决了非市场因素不可度量的问题。全书主要论述三个问题,一是研究非市场因素对油价的影响程度和规律,并给出一些新的石油期货定价模型:二是分析石油市场的市场有效性和油价运动规律,提出了油价波动周期性理论,并进行油价预测;三是探讨相关的能源政策。遵循从微观分析,到中观分析,再到宏观分析的写作思路和风格。《石油价格:非市场因素与运动规律》可作为从事能源经济分析、计量经济分析的高年级本科生、研究生和科研人员的参考书,也适合能源政策工作者、商品期货投资者和国际贸易从业人员参考。
国际油价波动分析与预测的目录
总序
序言
第一部分 国际油价波动分析
第一章 全球石油市场信息溢出研究
1.1 引言
1.2 信息溢出检验文献综述
1.3 实证研究
1.4 本章小结
1.5 参考文献
第二章 国际油价短期波动研究
2.1 引言
2.2 以前的相关研究
2.3 实证数据和方法
2.4 实证结果
2.5 本章小结
2.6 参考文献
第三章 基于粗糙集和小波神经网络的油价影响因素分析
3.1 引言
3.2 基于粗糙集和小波神经网络的混合方法
3.3 混合方法的应用
3.4 本章小结
3.5 参考文献
第四章 国际油价影响因素的综合分析
4.1 引言
4.2 影响原油供给的因素
4.3 影响原油需求的因素
4.4 影响原油价格的短期因素
4.5 本章小结
4.6 参考文献
第五章 突发事件对油价的影响分析
5.1 引言
5.2 突发事件类型
5.3 油价波动特点
5.4 案例分析:突发事件对油价的影响
5.5 本章小结
第六章 基于经验模态分解的国际原油价格波动分析
6.1 引言
6.2 经验模态分解
6.3 分解
6.4 合成
6.5 本章小结
6.6 参考文献
第七章 基于LSI的文本聚类在影响油价事件分类中的应用
7.1 引言
7.2 文本预处理
7.3 基于LSI的文本聚类
7.4 聚类结果分析
7.5 本章小结
7.6 参考文献
第二部分 国际油价预测
第八章 动态因子方法预测原油价格
8.1 引言
8.2 动态因子方法
8.3 数据
8.4 回归和预测结果
8.5 本章小结
8.6 参考文献
第九章 基于基金持仓的国际原油期货价格预测
9.1 引言
9.2 影响国际原油期货市场的因素分析
9.3 国际原油期货价格预测
9.4 本章小结
9.5 参考文献
第十章 小波变换在油价分析预测中的应用
10.1 引言
10.2 小波变换
10.3 基于小波变换的油价序列多尺度分解
10.4 基于多尺度分解的油价预测
10.5 本章小结
10.6 参考文献
第十一章 基于小波神经网络的油价预测
11.1 引言
11.2 小波神经网络介绍
11.3 实证分析
11.4 本章小结
11.5 参考文献
第十二章 基于供求理论的石油季度价格预测
12.1 石油价格影响机制简介
12.2 石油季度价格影响因素分析
12.3 石油季度价格预测模型的建立
12.4 本章小结
12.5 参考文献
第十三章 勘探开发与国际石油供求间关系分析
13.1 引言
13.2 石油供给的影响因素分析与情景预测
13.3 石油需求的影响因素分析与情景预测
13.4 本章小结
13.5 参考文献
第十四章 基于VARX与VECM模型的年度国际原油价格预测
14.1 引言
14.2 模型理论与方法
14.3 变量选取与数据说明
14.4 模型预测与结论
14.5 本章小结
14.6 参考文献
附录一 国际油价预测系列报告(摘选)
附录二 报刊文章和观点精选
实证结果分析与讨论
4.4.3.1 WTI和Brent市场收益率的统计特征
令WTI和Brent市场第t日的石油价格分别为P1,t和P2,t,则WTI和Brent市场第t日的对数收益率分别为Y1,t=ln(P1,t/P1,t-1)和Y2,t=ln(P2,t/P2,t-1),从而各得到4943个收益率样本。图4.20是两个市场所有样本收益率的走势图,不难发现,两个收益率序列均存在明显的波动集聚性。
图4.20 WTI和Brent市场原油现货收益率走势
WTI和Brent两个市场样本内收益率的基本统计特征如表4.17所示。总体而言,两个市场的收益率的平均水平和波动水平都非常接近,这也可以从图4.20上得到印证。同时,与标准正态分布的偏度为0、峰度为3相比,本节两个市场收益率的偏度为负(即呈现左偏现象),峰度远大于3,因此它们均具有尖峰厚尾的特征,而且从JB检验的结果也能看到收益率序列显著不服从正态分布。而对收益率序列进行自相关性LB 检验时,根据样本容量,选择滞后阶数为 ,检验结果表明它们均具有显著的自相关性。另外,通过AD F单位根检验,发现它们都是平稳序列。
表4.17 WTI和Brent市场收益率的基本统计特征
4.4.3.2 WTI和Brent市场收益率的GARCH模型估计
(1)WTI市场收益率的GARCH模型估计
为了滤掉收益率序列的自相关性,本节引入ARMA模型对收益率序列建模。根据自相关和偏自相关函数的截尾情况,并按照AIC值最小原则,经过多次尝试,发现ARMA(1,1)模型比较合适。对ARMA(1,1)模型的残差序列进行自相关性Ljung-Box检验,从自相关分析图上看到,残差序列的自相关系数都落入了随机区间,自相关系数的绝对值都小于0.1,与0没有明显差异,表明该残差序列是纯随机的,换言之,ARMA(1,1)模型很好地拟合了原有收益率序列。
鉴于WTI市场收益率序列存在明显的波动集聚性,因此,本节对ARMA(1,1)模型的残差进行ARCH效应检验,结果发现存在高阶ARCH效应,因此考虑采用GARCH模型。由于收益率序列存在厚尾现象,因此本节在GARCH 模型中引入GED 分布来描述模型的残差。根据AIC 值最小的原则以及模型系数要显著和不能为负的要求,通过比较GARCH(1,1),GARCH(1,2),GARCH(2,1)和GARCH(2,2)模型,本节选择GARCH(1,1)模型来拟合原有收益率序列。
为了进一步研究WTI收益率序列的波动特征,本节检验了TGARCH(1,1)和GARCH-M(1,1)模型。结果发现,收益率序列存在显著的TGARCH效应和GARCH-M 效应,即收益率的波动不但具有显著的不对称特征,而且还受到预期风险的显著影响。考虑到模型的AIC值要最小,以及为了描述收益率波动的不对称性,本节选择TGARCH(1,1)模型对WTI市场收益率的波动集聚性建模,模型形式如式4.16。另外,我们看到模型的GED分布参数为1.260823,小于2,从而验证了该收益率序列的尾部比正态分布要厚的特征,也为本节接下来进一步准确计算WTI市场的风险铺垫了良好的基础。
WTI市场收益率的TGARCH(1,1)模型为
国外油气与矿产资源利用风险评价与决策支持技术
式中:ε1,t-1﹤0,d1,t-1=1;否则,d1,t-1=0;
Log likelihood=11474.52,AIC=-4.898557,GED参数=1.260823
从模型的方差方程看到,油价收益率下跌时, 对h1,t的影响程度为α1+Ψ,即0.057202;而油价上涨时,该影响程度为α1,即0.083559,约为前者的1.5倍。h1,t-1前的系数为0.920539,接近1,表明当前方差冲击的92.0539%在下一期仍然存在,因此波动冲击衰减速度较慢,波动集聚现象比较严重。而检验TGARCH(1,1)模型的残差时发现,其自相关函数都在随机区间内,取阶数为68时,残差的Q统计量的显著性概率大于20%,而Q2统计量的显著性概率大于30%,因此经TGARCH(1,1)建模后的序列不再存在自相关现象和波动集聚性。另外,残差的ARCH-LM检验结果也表明,它不再存在波动集聚性,因此TGARCH(1,1)模型对WTI市场收益率序列的拟合效果较好。
(2)Brent市场收益率的GARCH模型估计
基于Brent市场收益率的波动特征,按照与WTI市场GARCH 模型类似的建模思路,建立了MA(1)模型。而利用ARCH-LM检验方法发现模型的残差存在显著的高阶ARCH效应,因此采用基于GED分布的GARCH模型。比较GARCH(1,1),GARCH(1,2),GARCH(2,1)和GARCH(2,2)模型的AIC值,以及有关系数的显著性,发现选择GARCH(1,1)模型是最合适的,具体形式如(式4.17)。进一步,对收益率序列建立TGARCH(1,1)模型和GARCH-M(1,1)模型,结果表明,有关系数并不显著,因此说明Brent市场收益率的波动并不存在显著的不对称杠杆效应,也不存在显著的GARCH-M效应。而且,我们也发现GED分布的参数小于2,因此验证了Brent市场收益率同样具有厚尾特征。
Brent市场收益率的GARCH(1,1)模型为
国外油气与矿产资源利用风险评价与决策支持技术
Log likelihood=11697.19,AIC=-4.993462,GED参数=1.324630
在模型的方差方程中,h2,t-1前的系数为0.912673,表示当前方差冲击的91.2673%在下一期仍然存在。可见,与WTI市场类似,Brent市场同样存在波动冲击衰减速度较慢的现象。检验模型的残差,发现其自相关函数都在随机区间内,取阶数为68时,标准残差的Q统计量的显著性概率大于50%,而Q2统计量的显著性概率大于20%,因此经GARCH(1,1)建模后的序列不再存在自相关现象和波动集聚性。另外,残差的ARCH-LM检验结果也表明,它不再存在波动集聚性,因此GARCH(1,1)模型对Brent市场收益率序列的拟合效果也较好。
图4.21给出了两个市场的条件异方差的走势,分别代表着它们的波动水平。从图中看到,一方面,两个市场收益率的波动水平基本相当,只是在某些区间WTI市场的波动会更大一些。当然,在海湾战争期间,Brent市场的波动程度相比而言更剧烈一点;另一方面,两个市场都存在一个明显的现象,那就是在波动比较剧烈的时期,其条件方差最高可达一般水平的20倍以上,这种波动的大规模震荡不但说明了国际石油市场存在显著的极端风险,而且对于市场波动和风险的预测具有重要的现实意义。
图4.21 WTI和Brent市场的条件异方差比较
4.4.3.3 WTI和Brent市场收益率的VaR模型估计和检验
正如前文所述,石油市场需要同时度量收益率下跌和上涨的风险,从而为石油生产者和采购者提供决策支持。为此,本节将采用上述基于GED分布的TGARCH(1,1)模型和GARCH(1,1)模型,按照方差-协方差方法来分别度量WTI和Brent市场在收益率上涨和下跌时的VaR 风险值。
(1)GED分布的分位数确定
根据GED分布的概率密度函数,使用MATLAB编程,经过多次数值测算,求出GED分布在本节所得自由度下的分位数,如表4.18所示。表中结果显示,95%的分位数与正态分布的1.645基本相同;但99%的分位数却明显大于正态分布的2.326,这也表明了国际油价收益率具有严重的厚尾特征。
表4.18 WTI和Brent市场收益率的GED分布参数及分位数
(2)基于GED-GARCH模型的VaR风险值计算
根据VaR风险的定义,我们得到以下两个计算VaR风险的公式。其中上涨风险的VaR值计算公式为
国外油气与矿产资源利用风险评价与决策支持技术
式中;zm,α﹥0,表示第m个市场中(T)GARCH(1,1)模型的残差所服从的GED分布的分位数;hm,t为第m个市场的收益率的异方差。
同理,得到下跌风险的VaR值计算公式为
国外油气与矿产资源利用风险评价与决策支持技术
根据上述两个VaR风险计算公式,本节计算了在95%和99%的置信度下,WTI和Brent市场的上涨风险和下跌风险(表4.19,表4.20)。
表4.19 WTI市场收益率的VaR计算结果
表4.20 Brent市场收益率的VaR计算结果
从表4.19和表4.20的实证结果看到,第一,除95%的置信度下市场收益率上涨风险的LR值略大于临界值外,其他所有LR统计量的值均小于相应的临界值,因此按照Kupiec的返回检验方法,可以认为基于GED分布的TGARCH模型和GARCH模型基本上能够充分估计出两个市场收益率的VaR风险值。从市场收益率与VaR风险值的走势也可以看到这一点(图4.22)。第二,在99%的置信度下,两个市场的VaR 模型对收益率的上涨风险比对收益率的下跌风险的估计精度都更高,这可能是由于收益率分布的左尾比较长,GED分布尚未完全捕捉到所有的厚尾现象。而在95%的置信度下,对下跌风险的估计精度更高。第三,从VaR的均值来看,在相同的置信度下,不管收益率是上涨还是下跌,WTI市场的VaR值都要比Brent市场对应的VaR 风险值大,因此需要更多的风险准备金。当然,从图4.23的VaR 风险走势可以发现,事实上,两个市场的VaR风险基本上相差不大,只是在某些样本区间内,WTI市场的风险会超过Brent市场。
图4.22 99%的置信度下Brent市场的收益率及其VaR风险值
图4.23 99%的置信度下WTI和Brent市场收益率上涨和下跌时的VaR风险值
(3)VaR模型比较
在采用GARCH模型计算市场收益率的VaR 风险值时,一般都假设模型的残差服从正态分布,从而直接令zm,α等于标准正态分布的分位数。但实际上,石油市场的收益率及其模型残差一般都是非正态分布的,因此得到的VaR 模型往往不够充分。为此,本节以99%的置信度为例,建立了基于正态分布分位数的VaR 模型,计算结果如表4.21所示,并与表4.19和表4.20中VaR模型的有关结果进行比较。
表4.21 基于正态分布分位数的VaR模型计算结果
结果表明,从VaR均值上看,基于正态分布的VaR模型在两个市场、两个方向(即上涨和下跌)上计算得到的VaR风险值均比基于GED分布的VaR 模型的相应结果要靠近零点,这从模型失效次数的比较上也能得到验证。再者,由于表4.21中的失效次数均超过了99%的置信度下临界处的失效次数(约为47),因此此时的计算结果低估了市场的实际风险。
而按照Kupiec的返回检验方法,可看出与99%置信度下的临界值6.64相比,不管是WTI市场还是Brent市场,不管是上涨还是下跌方向,采用基于正态分布分位数的VaR模型计算市场风险基本上都不够合理。其中,尽管WTI市场的上涨风险计算结果基本上可以接受,但与表4.19中对应的LR值相比,发现后者更加充分而准确。因此,总体而言,采用基于GED分布的VaR模型要比基于正态分布的VaR模型更充分而合适,得到的结果更可取。
当然,在95%的置信度下,基于正态分布和GED分布的VaR模型的LR值几乎一样,都是比较充分的。这是由于它们的分位数几乎是一样的,均为1.645左右。
另外,本节通过计算还发现,如果在建立GARCH模型时假设残差服从正态分布,而计算VaR时又选择一般所采用的正态分布分位数,则得到的VaR模型不管是哪个市场、哪个方向的风险都将很不充分,而先前很多研究往往就是这么做的。
(4)VaR模型的预测能力
从上述分析中可以看到,基于GED-GARCH的VaR模型能够较好地估计和预测样本内数据。为了更加全面检验这种VaR模型的预测能力,接下来本节以95%的置信度为例,采用它来预测样本外数据的VaR风险值,并与样本外的实际收益率数据进行比较。结果发现,在WTI和Brent市场上,落在预测得到的正向VaR和负向VaR之间的实际收益率占整个样本外预测区间所有收益率的比例均为95.76%,接近95%;相应的LR值为0.3409,小于95%置信度下的临界值3.84,因此是可以接受的(图4.24,图4.25)。换言之,根据样本内数据建立的VaR 模型用于预测样本外数据的VaR风险时,其预测能力是可以接受的。另外,为了比较,本节也采用了广受好评的H SAF方法建立模型,并预测了样本外数据的VaR风险,但检验却发现其在此处的预测结果并不理想。因为不管是WTI市场还是Brent市场,落在预测得到的正向VaR和负向VaR之间的收益率占整个预测区间所有收益率的比例均为91.92%,离95%较远;相应的LR统计量为4.40,大于临界值,因此应该拒绝原假设,即认为在此处采用HSAF方法预测市场VaR风险并不妥当。
图4.24 95%的置信度下WTI市场的样本外实际收益率与预测VaR值
图4.25 95%的置信度下Brent市场的样本外实际收益率与预测VaR值
4.4.3.4 WTI与Brent市场风险溢出效应检验
得到WTI和Brent两个市场的收益率上涨和下跌时的VaR风险值之后,本节根据Hong(2003)提出的风险-Granger因果检验方法,构造相应的统计量Q1(M)和Q2(M),并通过MATLAB编程求出统计量的值及其显著性概率,从而检验两个石油市场之间的单向和双向风险溢出效应。计算结果如表4.22所示,其中M分别取10,20和30。
表4.22 WTI与Brent市场风险溢出效应检验结果
从表4.22看到,一方面,在95%和99%的置信度下,不管是上涨风险还是下跌风险,WTI和Brent市场都具有显著的双向Granger因果关系,即两个石油市场之间存在强烈的风险溢出效应;另一方面,为了进一步确定风险溢出的方向,我们从利用单向风险-Granger因果检验的统计量Q1(M)计算得到的结果看到,不管置信度是95%还是99%,不管是上涨风险还是下跌风险,都存在从WTI到Brent市场的风险溢出效应。而若Brent到WTI市场的风险溢出情况稍微复杂,在95%的置信度下,只存在收益率下跌方向的风险溢出,而收益率上涨时并不存在;在99%的置信度下,情况则相反,只存在收益率上涨方向的风险溢出,而不存在下跌方向的风险溢出效应。前者可能是由于95%的置信度下收益率上涨方向的VaR 模型不够充分导致,而99%的置信度下VaR模型是非常充分的,因此后者更为可信。换言之,可以认为在99%的置信度下,不存在从Brent市场到WTI市场的风险溢出效应。
这表示,当市场出现利空消息从而导致油价收益率下跌时,WTI市场的风险状况有助于预测Brent市场的风险,而反之不然。当市场出现利好消息从而导致油价收益率上涨时,两个市场的风险的历史信息均有助于预测彼此未来的市场风险。这对有关政府和企业的科学决策具有一定的借鉴意义。
国际原油价格影响因素的定量分析
在上节国际原油价格形成模型的基础上,下面对影响国际原油价格的几个主要因素进行定量模拟分析。
4.3.3.1 不考虑石油进口国开放度的模拟结果
下面分别就世界经济活动水平(实际GDP)、OECD 石油储备和OPEC原油产量的单因素、二因素和三因素变化对国际原油价格的影响进行模拟分析。
情景1 单因素变化对国际原油价格的影响。即分别考察世界经济(实际GDP)、OPEC原油产量和OECD石油储备量单一因素变化,其余因素不变时,国际原油价格随这些因素变化的情况。表4.7,表4.8,表4.9为模拟结果。
表4.7 世界实际GDP单一因素变化的影响 单位:%
表4.8 OPEC原油产量单一因素变化的影响 单位:%
续表
表4.9 OECD石油储备单一因素变化的影响 单位:%
情景2 二因素变化对国际原油价格的影响。即分别考察世界实际GDP、OPEC原油产量和OECD石油储备量三者中任意两个发生不同程度的变化,另一个因素不变时,国际原油价格随它们变化的情况。模拟结果见表4.10,表4.11。
表4.10 OPEC原油产量和OECD石油储备二因素变化的影响 单位:%
表4.11 OPEC原油产量和世界实际GDP二因素变化的影响 单位:%
情景3 三因素变化对国际原油价格变化的影响。即考察世界经济活动水平(实际GDP)、OECD国家石油储备量和OPEC原油产量3个因素同时发生不同程度的变化时,国际原油价格的变化情况(表4.12)。
表4.12 三因素变化的影响 单位:%
4.3.3.2 考虑石油进口国开放度的模拟结果
与上面的模拟类似,下面分别就世界经济(实际GDP)、OECD 石油储备、石油进口国开放度和OPEC原油产量的单因素、二因素、三因素和四因素变化对国际原油价格的影响进行模拟分析。
情景1 石油进口国开放度单因素变化对国际原油价格的影响。表4.13反映了在世界经济(实际GDP)、OECD石油储备量和OPEC原油产量都不变,石油进口国开放度发生不同程度的变化时,国际原油价格的变动情况。
表4.13 石油进口国开放度单一因素变化的影响 单位:%
情景2 二因素变化对国际原油价格的影响。表4.14反映了世界经济活动水平(实际GDP)、OECD国家石油储备量不变的情况下,OPEC原油产量和石油进口国开放度发生不同程度的变化时,国际原油价格的变化情况。
表4.14 OPEC原油产量和石油进口国开放度二因素变化的影响 单位:%
情景3 三因素变化对国际原油价格变化的影响。表4.15反映了OECD国家石油储备量不变,世界经济活动水平(实际GDP)、OPEC原油产量和石油进口国开放度同时发生不同程度的变化时,国际原油价格的变化情况。
表4.15 三因素变化的影响 单位:%
情景4 四因素变化对国际原油价格的影响。世界经济活动水平(GDP)、OECD国家石油储备量和OPEC原油产量和石油进口国开放度四因素同时发生变化时,国际原油价格的变化情况。表4.16反映了OPEC削减4%的原油产量,世界经济处于不同的发展状况、进口国开放度进一步增大和OECD国家动用不同量的石油储备应对OPEC的这种减产时国际原油价格的变动结果。
表4.16 四因素变化的影响 单位:%
根据本节对国际原油价格的4个主要影响因素(世界实际GDP、OECD 石油储备、OPEC原油产量和石油进口国开放度TRI)的分析可以获得以下几点结论:
1)从单因素作用大小来看,OPEC原油产量对国际原油价格的影响最大,其次是世界经济活动水平(实际GDP)、石油进口国开放度和OECD石油储备量。世界实际GDP、石油进口国开放度和OECD石油储备量对国际原油价格有正向影响,OPEC原油产量对国际原油价格有负向影响。
2)各个影响因素对国际原油价格的影响程度是不对称的。世界实际GDP、石油进口国开放度和OECD石油储备量增加导致国际原油价格上涨的幅度比这些因素同等程度的下降导致国际原油价格下跌的幅度大;而OPEC原油产量的下降导致国际原油价格上涨的幅度大于OPEC产量增加同样的量引起国际原油价格下跌的幅度。
3)从单因素看,在不考虑石油进口国开放度情况下,如果世界实际的GDP每年以2%的速度增长,OPEC产量和OECD国家石油储备量不变的话,国际原油价格会以每年约6.18%的速度上涨。OECD石油储备量单方面变化的话,OECD抛出10%的储备,国际原油价格将下降28.7%; OPEC单方面减产4%,国际原油价格将上涨58.8%。考虑石油进口国开放度,各单因素对国际原油价格的影响略有下降,且石油进口国开放度对国际原油价格的影响是显著的。如石油进口国开放度增加1%,即世界石油进出口总量之和占世界实际GDP比例增加1%,国际原油价格将上涨5%。
4)从二因素看,两因素的共同作用或减弱或加强了单因素对国际原油价格的影响。如OECD石油储备对OPEC减产有一定的抑制作用。例如OPEC减产4%,在其他条件不变的情况下OECD只要动用14%的储备基本上就可以消除OPEC 减产对国际原油价格的影响。
5)三因素或四因素的情况使问题变得更复杂。三因素或四因素的共同作用使得单因素作用的效果更加不明显。各因素对原油价格弹性大小和各因素本身变动力度及变动方向(增加还是减少)都是影响原油价格最终变化程度的重要原因。例如OPEC减产4%的同时世界实际GDP又以2%的增长率在增长,这时为保持国际原油价格的稳定,OECD需要动用18.2%的储备而不是14%的储备才能消除OPEC产量和世界实际GDP变化对国际原油价格的影响。
6)在相同的情况下,石油进口国开放度增大会使国际原油价格上涨。单因素(即其他因素不变的)情况下,石油进口国开放度增加1%,国际原油价格将上涨5%。多因素情况下,如OPEC减产4%,同时世界实际GDP以2%的增长率增长,OECD只要动用18.2%的储备就可以保持国际原油价格的稳定,但如果此时石油进口国开放度增加了1%,国际原油价格将上涨8.6%。
总的来说,OPEC对国际原油市场有一定的调控能力。但由于影响国际原油价格的因素很多,且各因素本身存在很大变数,如世界经济活动水平(实际GDP)的变化就受很多因素的影响,此外影响国际原油价格的各因素之间的关系也比较复杂,这些原因限制了OPEC对国际原油价格的影响能力。比如单方面来看(即所有其他因素都不变的情况下),OPEC减产4%,会导致国际原油价格上涨58.8%,但实际上这种情况基本上是不会发生的,因为在OPEC减产的同时其他很多因素也都在发生变化,这些因素的变化或者加剧或者减弱了OPEC减产对国际原油价格的影响。
上述对国际原油价格的分析只考虑了OPEC原油产量、OECD国家的石油储备量、世界经济活动水平(实际GDP)和石油进口国开放度4个主要影响因素。但正如前文指出的,原油价格的影响因素很多,不仅包括本节考虑的各种市场因素,还有一些不确定性成分很大的非市场因素,如政治宗教、军事战争、意外事件、金融投机甚至市场心理等。所以本节的模拟结果可以说是在比较理想的环境条件下的结果,很难将本节的结果直接与现实情况相对照。但这并不等于说本节的结果毫无现实意义。实际上同任何商品一样,虽然原油产品价格的形成非常复杂,但根据微观经济学理论,这些非市场因素的影响一般是暂时的,影响时间较短;从长期来看,国际原油价格的形成仍主要由市场因素,即由国际石油市场的供需因素所决定。这也就是说,本节的结论,从长期来看还是具有一定的现实意义的。
此外,由于OPEC只提供国际原油需求量与非OPEC国家原油产量的剩余部分,其中很多因素超出了OPEC的控制。这些因素的共同作用使得原油市场价格的变化更加复杂,这也在一定程度上削弱和限制了OPEC对国际原油价格作用的发挥。
最后,OPEC对国际原油价格的影响不仅仅通过产量变化来反映,OPEC 作为国际石油市场上的一支特殊力量,有关它的任何消息可能都会成为油价变化的重要因素(图4.18)。OPEC确实是国际石油市场的一支重要的影响力量,而且它的影响不仅仅局限于它所采取的实际行动,它更大的影响力可能来自它对石油市场主体心理的影响。
图4.18 油价波动与OPEC会议
(据 estonChristiansen%20Paper.pdf)
总之,OPEC自1960年成立以来经历了40多年的风风雨雨,它将来的发展如何不仅与它们自身有关,如它们制定的石油政策是否合理、能否有效地解决自身内部利益冲突、能否有效贯彻产量政策等,还与外界很多它们不能控制的不确定因素有关。虽然OPEC面临的问题很多,特别是外在的和将来的不确定因素对OPEC作用的发挥影响很大。但在当今全球石油价格舞台上,除了主要石油消费国和非OPEC国家的生产行为外,石油期货市场上的金融投机商是对OPEC发难的一支重要力量。自20世纪80年代中期以来,正是期货市场上的这些金融投机商在对欧佩克的油价影响力进行发难。如美国“9·11”事件后,在短短的12个交易日,价格就从31.05美元/桶的高点急挫至20.70美元/桶,跌幅达10.35美元/桶;9月25日单日的最大跌幅达3.74美元/桶。在此前后,世界石油市场供求关系并没有发生根本性的变化,但是大量投机资金利用市场担心“9·11”事件后美国经济会加速下滑的心理预期,恶意炒作导致原油价格大幅度波动。根据路透社的消息,从国际石油期货交易市场看,真正的需求量不足市场总量的1/3,其余都是套利者人为造成的“虚拟石油”,估计石油投机资本已经达到5000亿美元以上的规模。因此,期货市场和纯粹的投机商很大程度上左右着价格变动的步伐和幅度。如何解决这些问题是OPEC面临的一个主要任务。
以往OPEC往往是在国际油价暴涨或暴跌之后,才调整其成员国产量以稳定市场。由于增减产量从作出决定到真正实施,中间需要一段时间;往往计划赶不上变化,使OPEC的政策对市场的调节作用经常大打折扣。伊拉克战争爆发等一系列事件虽然给国际石油市场和OPEC带来较大冲击,但该组织以此为契机,开始在政策制定上更多地采取“未雨绸缪,主动出击”的方针。OPEC会议主席、印度尼西亚能源和矿产资源部部长普尔诺莫·尤斯吉安托罗曾经说过,与其在最坏的情况发生后再仓促反应,不如尽早发出信号以取得最好效果。虽然OPEC这种变被动为主动的作法可能对提高OPEC对国际石油市场的影响力有一定帮助,但如果OPEC对石油市场的判断失误有可能加剧国际原油价格的波动。
从上面的研究结果中,我们可以肯定地说OPEC过去和现在在国际石油价格舞台上占有重要地位,而且可以预见将来也将继续发挥作用;但作用大小,能否达到OPEC自己的预期目的,现在还很难预料,我们将拭目以待。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。